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ABSTRACT 

Explicit examples of smooth cocycles not cohomologous to constamts are 

constructed. Necessary and sufficient conditions on the irrational number  

0 are given for the existence of such cocycles. It is shown that ,  depending 

o n  8, the set of C r cocycles whose skew-product is ergodic is either residual 

or empty. 

1. I n t r o d u c t i o n  

Let G be a countable group which acts on a measure space (X ,# ) ,  and let A be 

a locally compact, second countable, abelian group. A eocyc l e  is a Borel map 

v : X × G --* A which satisfies 

v(x, gl)  + v( x . gl,.q2) = v( x, g l  + g2 ) 

for all gl ,g2  E G and for almost all x E X. v is a c o b o u n d a r y  if there is a Borel 

function w : X --* A such that 

v(x, g) = w(x)  - w(= .  g) 

for all g E G and for almost all x E X. Two eoeyeles are called c o h o m o l o g o u s  if 

they differ by a coboundary. We focus our attention on cocycles of an irrational 
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rotation. For a fixed irrational O, we let X = R / g  (parameterized by [0,1)), 

G = Z,  z • n = z + nO, and A = R. In this case, the cocyde v is determined 

completely by the function v(z )  = v(z ,  I), with v(x,  n) = )-~/=0"-1 v(x  + jO) for 

n > 0 .  

Given a cocyele v, the skew-p roduc t  action of G on A × X is defined by 

(a, z ) .  9 = (a + v(z ,  9), z .  9). In the case G = Z, and in particular for the irra- 

tional rotation, the skew-product action is generated by the single transforma- 

tion T,,(a, z)  = (a + v(z ,  1), z .  1). Cohomologous cocycles give rise to isomorphic 

skew-products, and coboundaries to non-ergodic skew-products [s], though the 

converses to these statements need not hold. 

We address the question of the existence of smooth cocycles which are not 

cohomologous to a constant, and the related question of the existence of smooth 

cocycles which give rise to ergodie skew-products. Krygin ([kr]) constructed 

specific examples of such cocycles for an irrational rotation, with the smoothness 

of the cocycle depending on how well the irrational 0 is approximated by rationals. 

Nerurkar ([n]) proved that, under conditions on 0 similar to those of Krygin, 

cocycles which give rise to ergodie skew-products form a residual set in the closure 

of the C r coboundaries (with C r metric). In this paper, we slightly relax the 

conditions on 0 and obtain a necessary and sufficient condition for the existence 

of smooth cocycles for an irrational rotation that give ergodic skew-products. We 

explicitly construct such cocycles, and show that when they exist they form a 

residual set. 

2 ,  

Our construction will depend on the continued fraction expansion of the irrational 

number 8. Accordingly, we let 
1 

0 = •0 + 1 - -  [ ( ~ 0 ; ( ~ 1 ' ( ~ 2 ' ' ' ' ] '  

".. 

with eonvergents ~ = [a0; a l ,  aa , . - -a~] .  The convergents give the best ratio- nh 

nal approximations to 0 relative to size of denominator. The closeness of this 

approximation is determined by the rate of growth of the denominators of the 

convergents, which in turn is controlled by the size of the partial quotients {aj}. 

More precisely, if we let Hx[[ be the distance from a real number z to the nearest 

integer, we have: 
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LEMMA 1: 

(i) link011 = min{llj01l: 0 < j < n,+l,j e Z}. 
(ii) ½ < nk+allnk011 < 1. 

(iii) nk = akn t -1  + nk-2. 

(iv) ~+lllnk011 + Ilnk+lt~ll = Ilnk-lt~ll. 

Proof: See [kh]. | 

Let p = sup{7 ~ 7.: l iminf , - .~nXlln0l l  -- 0}. The t y p e  of O is de~ned simi- 

laxly, except that the supremum is taken over 3' E R ([kn]). Note that p > 0 for 

all 8, and that p = 0 if and only if # has bounded partial quotients. We will use 

p as a measure of how well # can be approximated by rationals. 

Choose a subsequence of denominators of convergents for 8, {nth }, which sat- 

isfy: 

(1) lim~...~ nfh II~,~01l = 0 

(2) ,~,,ll~,0ll < ½ 
k-1 

(3) ntk _> kmax(n/k_~+s,Ej= 1 nti+l ) 

The first condition is possible because of the definition of p and (i) of Lemma 1. 

The second condition follows from the first if p > 1; if p = 0, it is accomplished 

by shifting Ik by 1 if necessary (see [kh]). The third condition is satisfied by 

picking a sparse subsequence of those denominators which satisfy the first two. 

Let/3k = max ( [ _ ~ 2 ] ,  1) (where [.] refers to the greatest integer function). Let 
V(X) E k = l  1 e21rinlkz = ~ = ~'~m=0 v(z + toO) = ~k",~ = f(w) -1- ig(x), and let v(z, n) n-1 

f ( z ,  n) + ig(z , n) be the cocycle determined by o. 

LEMMA 2: There exists a sequence of constants {cj}, ~ <Ic i l  < ~, such that 

Iv(x,/3jnli) - cje 2"¢i"'j ~1 < 3 / j  

~or ~ /3 : .  

Proof: Let cj = (1-~2"'P~"'J"tJ ,) By comparing arclength to chordlength in a 
#i n 9 (1-e2"~"9 0)" 

circle of circumference 1, we see that for any z E [0,1], 

211xll <_ I x -  e ~ " l  _< Ilxll. 
7r 

also, if roll%01! < ~, we have IIm%al[ = roll%011. This holds for m = ~jntj, 
by condition (2) if/3j = 1 and otherwise by Lemma 1. The desired bounds on cj 

follow. 
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By similar reasoning we see that 

• (1 - e2"i~i"'J n't,e) [ 
[~(X'~Jnl')--Cje2~rm'ixl <-- E ~n,--(~:'~2nin,.e"'~) e2nin''z 

k#j  

<- 7 &llnl, OI------~ + ~ 3,n** " k= j+ l  

The first sum, 

~-~ ~AI%Oll ~-~ %11%-xOll 
~--a - ~ nz,+~lt"*.Oll 

2 j-1 
<~ - -  ~ nl~+ 1 

nlj  k=l 

2 
< - ,  by condition (3). 

3 

nlk+l  

nt~ 

Two applications of the recursion relation (iii) of Lemma 1 show that --fiT- < ~ . " ' - ~  1 

Thus, by condition (3) again, the second sum, 

o o  

k=j+ l  ~knl~ - -  ni~ k=j+l 
oo 1 1 ~ (~)~_j 

-< ~ ~=j+~ 

1 < - -  | 
- j + l "  

THEOREM 1: There exists a C r (periodic) rea/-va/ued cocycle for 0, which is not 

cohomologous to a constant,  f fand  only ifliminf,-..oo n'llnOll = o. 

Proof." Suppose hminfn...oonrllnOII = 0, so that r < p. Let  v be defined as 

above, 
oo 

k=l ~ k n l k  

and let f be its real part. If we differentiate v term by term, r times, we get the 

(2'~0""[*-1 e2~i'% ~. By condition (1), and using (ii) and formal power series ~ = 1  a~ 

(iii) of Lemma 1, we have '*;~ ~ O. Thus, by picking a sparser subsequence 
Otlk + l  nl k 

if necessary, we have 11 coefficients in the sum above, and thus a continuous r th 
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derivative for v and therefore f .  It remains to show that f is not cohomologous 

to a constant. Suppose, by way of contradiction, that 

f ( z )  = w(x) - w(z + 0) + K. 

Then e 2~riy(z) = e2~riKeZniw(z)/e 2niw(z+O). Hence, because 11/3i%011 ~ 0, there 

exists a subsequence of the sequence {f(. ,  /3jn~ )} that converges in measure 

to some constant A = e 2~iK'. However, Lemma 2 shows that [ f ( x , # j n i j ) -  

aj cos 27rntj x + bj sin 2rn~# x[ < ~, where cj = aj + ibj. The bounds on Icjl imply 

that we can find an e such that tz({x: minmez ]aj cos2rnz# x + bj sin2~rntix - 

m - K'I > e}) > ½ for all j, thus contradicting the convergence assertion above. 

Now suppose that liminf,--.oo nqlnOII ~ O, so that there exists a positive con- 

stant C with nrlln011 > c for all n. If g is C r, then its Fourier coefficients, 

{cn(g)}, satisfy {nrc,(g)}  • 12, and thus { ~ }  • 12. This shows that the 1--e 

equation g(x) = w(x)  - w(x  + O) + co(g) can be solved for w using Fourier series, 

and thus that  g is cohomologous to a constant. | 

Remark: A consequence of Theorem 1 is that for every irrational number 0 

there exists a continuous periodic function f ,  having integral 0, that is not a 

coboundary for 0. See [kr]. 

The construction on which Theorem 1 is based can be modified to show the 

existence of many cocycles which are not coboundaries in C r, r < p. Further, 

it can be shown that these functions also have the property that their skew- 

products are ergodic. The following Theorem shows that this behavior is in fact 

generic. 

Let H~ denote the complete metric space consisting of {g • Cr( 'r):  f gdu = 0}. 

The C r metric dr is defined on C r by 

dr(g, h) = max max Ig(i)(x) - h(i)(x)[. 
0 < i < r 0 < z < l  

THEOREM 2: Ifliminf,_.oonrllnOl[ = O, then the set S of g E H~ for which Tg 

is ergodic is residual in H~; i f  liminf,--.oo nrlln011 # 0, the set S is empty. 

Proof." Suppose liminf,.-.co nqlnOII = 0. For each pair (n, k) of positive integers, 

let O,,k be the set of all g E H~ such that there exists a j > n and real numbers 
2 2 a i and bi, with 21- < aj + b~ < 2, such that 

1 
[g(x, 13in b ) - a i cos 21rnli x - b i sin 2~rnz~ x] < ~, 
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where the sequences {nlj } and {13j} are defined as above. Clearly, each O.,k is 

open in H~. We will prove residuality by first showing that each O.,k is dense in 

H~', and then showing that if g E Nk N,, O.,k, then Tg is ergodic. 

To prove the density, it will suffice to show that O,,,k contains the trigonomet- 
t t~ ric polynomials. Accordingly, we let t(x) = R(~p=1% e2''px) be an arbitrary 

trigonometric polynomial. Reasoning as in the proof of Lemma 2, we see that 

It(x,  inzj)l < 
0 I 

- -  p = l  [1 - -  e21¢iP°[ 

<- llpOll p=l 

< Mfli I1% ell 

for some constant M, independent of j .  We choose j0 > n large enough that 

M/3j I1% Oil < -} for j >_ j0. Then, given, > O, we choose j > Y0 large enough 
(27r~rn r - 1  

that ~ < e. This is possible since by hypothesis r < p, so that we have, as 
n r 

in the proof of Theorem 1, zk ~ 0. If we let h(x) = 1 2~tinl. z, then this ~ l k + t n l  k & m----'~, e : 

last restriction on j guarantees that Ilhllc, -- d,(h, 0) < e. If we let aj and bj be 

defined as in Theorem 1, so that aj cos 2~rnzj x + bj sin27rn b x = ~(h(x,  fljnt~ )), 

the condition j > j0 finishes the proof of density by showing that t + ~(h) E O,,k. 

Now we let g E Nk N, O,,t,, and show the ergodicity of Tg. Let E(g) denote 

the group of essential values of g (See [s]). It will suffice to show that E(g) # )~Z 

for any ~ >_ 0. 

Suppose E(g) = AZ. We will make use of a result of K. Schmidt, which implies 

that for any compact set K with K N E(g) = 0, there is a Borel set B, #(B) > 0, 

such that B f~ B - fljn b 0 D {x: g(x, ~jnb ) e K} = $ for all j > 0 (Prop. 3.8 of Is]). 

If )~ # 0, for each e > 0, we define the compact set g~ = {x E [-2, 2]: Ix - ~Z I > 

e}; if ~ = 0, we let K~ be defined as if ~ = 1. 

An elementary estimate produces an e0 > 0 such that/~({x E [0, 1): acos2~rx+ 

bsin27rx e Kt0}) > 21- for any a,b e R with ½ < la] 2 q-lb] ~ < 2. This gives, for 

each j and for each interval I of length a multiple of ~ n~j ' 

#({x ~ Ii aj cos2~rntjx + b I sin2~rntjx e K,0}) > #(I----2) 
2 ' 

where a i and bj are as in the definition of O,,~. We let K = K ~ ,  and obtain for 

each n, an integer j > n such that I~([y,y + ,~7~) n {x: g(x, fljn~) e g } )  > ~ n~j ' 

for all y. 
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We will reach a contradiction, via Schmidt's result, by showing that for any 

Borel set B with g(B) > 0, and for j sufficiently large, there exists a y E [0, 1) 
6 3 with p(B N (B - ~jntje) N [y,y + ~- ) )  > --,,,¢ . Thus, let B be a fixed set of 

positive measure. Since almost every point of B is a point of density, we have 

that,  for almost all y E B, g(B N [y, y + ,-~f) > ~,,,¢ for j sufficiently large. Because 

II i% el1 < 11%-1811 < for such a y and j we also have that I~(B - fljnti 8) N ntj ' 

6 4 6 ~ and we [Y, Y + h-~-~ )) > --.,,~j It follows that p(B N (B - nti 8) N [y, y + -~-~,i ) ) > "~i ' 

have established the ergodicity of Tg. 

To prove the second statement, suppose Tg is ergodic, and g E C r. Then 

g cannot be a coboundary and must have integral 0 [s]. Thus by Theorem 1, 

l iminf,_..~  rll, 811 = 0. t 

Remark: Theorem 2.2 of [hi implies that the set S is residual in H~ under the 

more stringent assumption that liminf,,._.o~ n~+'llnell is finite for some e > 0. 

If g is a coboundary for 8, i.e., g(x) = w(z)  - w(x + 8), then the function 

u(x, y) = y + w(x) is a nonconstant inwariant function for the skew-product Tg. 

Hence, we have the following immediate corollary of Theorems 1 and 2. 

COROLLARY: If liminf,_oonrlln8]l = O, then the set of C ~ functions that are 

coboundaries for 8 is of the first category in H~; i f l i m i n f n _ ~   qlnell # 0, the 

set of C ~ functions that are coboundaries for 8 coincides with H~. 

Remark: The residuality result of Theorem 2 provides an existence proof for 

continuous periodic functions whose associated skew-products are ergodic. We 

emphasize that the function f constructed in the proof of Theorem 1, 

oo 1 21tint z" 
f ( x )  = ~(:~"~ -S--z--e . ), 

k = l  p k n l ,  

is an explicit example of such a function. 
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